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Simulating graphene dynamics in synthetic space
with photonic rings
Danying Yu1,8, Guangzhen Li 1,8, Meng Xiao 2, Da-Wei Wang 3, Yong Wan4, Luqi Yuan 1✉ &

Xianfeng Chen1,5,6,7

Photonic honeycomb lattices have attracted broad interests for their fruitful ways in

manipulating light, which yet hold difficulties in achieving arbitrary reconfigurability and

hence flexible functionality due to fixed geometry configurations. Here we theoretically

propose to construct the honeycomb lattice in a one-dimensional ring array under dynamic

modulations, with an additional synthetic dimension created by connecting the frequency

degree of freedom of light. Such a system is highly re-configurable with parameters flexibly

controlled by external modulations. Therefore, various physical phenomena associated with

graphene including Klein tunneling, valley-dependent edge states, effective magnetic field, as

well as valley-dependent Lorentz force can be simulated in this lattice, which exhibits

important potentials for manipulating photons in different ways. Our work unveils an alter-

native platform for constructing the honeycomb lattice in a synthetic space, which holds

complex functionalities and could be important for optical signal processing as well as

quantum simulation.
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Honeycomb lattices, possessing the same geometry as
graphene1,2, have attracted great interest in condensed
matter physics3,4 and photonics5,6. Rich physical phe-

nomena have been reported in photonic honeycomb lattices,
taking advantage of properties of Dirac points and the valley
degree of freedom6–15 and showing an excellent platform for
studying topological photonics16, which also have potential
applications in the interface of nonlinear optics17 and quantum
optics18, pointing towards topological fiber19, topological laser20,
as well as edge and gap solitons21. Different platforms have been
achieved to construct photonic honeycomb lattices, such as
waveguide arrays22, on-chip silicon photonics23, semi-conductor
microcavities24, and metamaterials25. However, one notes that the
reconfigurability and flexible experimental feasibility of a system
are attractive for satisfying various experimental requirements
and different applications, as well as relaxing the fabrication
constrains, which are naturally limited in the current honeycomb
systems due to their fixed configurations or structures after
fabrication22–25. Therefore, it is of significant importance to find
an alternative platform, which is experimentally feasible and
holds reconfigurability.

Recently, synthetic dimensions have experienced extensive
explorations in many areas of photonics, for providing exotic
connectivities and exploring physics beyond real dimensions, in
which a photonic synthetic dimension can be formed by coupling
suitable degrees of freedom of light, such as frequency modes,
orbital angular momenta, modal dimensions, and others26–28.
Among the various platforms to construct synthetic dimensions,
a ring resonator under dynamic modulation has been found to be
capable of creating a synthetic dimension along the frequency
axis of light29, which together with spatial dimensions, a variety
of physical implementations have been suggested with two or
more dimensions30–39.

Here, we theoretically propose the construction of a highly re-
configurable honeycomb lattice in a synthetic space in a modu-
lated ring resonator system. We show that a one-dimensional ring
resonator array composed by two types of resonators under
appropriate dynamic modulation supports a two-dimensional
honeycomb lattice in a synthetic space including both spatial and
frequency dimensions. Different physics associated with the
photonic graphene can be simulated in this unique platform, such
as Klein tunneling14, valley-dependent edge states13, topological
edge states with the effective magnetic field40, and valley-
dependent Lorentz force8. The modulated ring systems can be
realized in either fiber-based system41–44 or on-chip lithium
niobate resonator45, which brings our proposal to a flexible
experimental setup with state-of-art technologies in bulk optics or
integrated photonics. Our work not only broadens the current
research on synthetic dimensions in photonics26,27, but also
enriches quantum simulations with topological photonics46,47,
which shows potential applications in optical signal
processing48,49 and quantum computations50,51.

Results
Model. We begin with considering a pair of ring resonators
(labeled as A and B) with the same circumference L undergoing
dynamic modulation [Fig. 1a]. The central resonant frequencies
of ring A and ring B are set at ω0 and ω0−Ω/2, respectively. In
the absence of group velocity dispersion (GVD) in waveguides
that compose rings, the frequency of the mth resonant mode in
ring A (ring B) is ωm,A= ω0+mΩ (ωm,B= ω0−Ω/2+mΩ),
where Ω= 2πvg/L is the free spectral ranges (FSR) with vg being
the group velocity inside both rings. The approximation that
GVD of waveguides is zero makes the synthetic frequency
dimension being uniform, which is valid for considering finite

resonant modes near the zero GVD point and is confirmed by
previous experiments41–44. We place electro-optic modulators
(EOM) inside two rings, with modulation frequency Ω/2 and
modulation phase ϕ. A synthetic frequency dimension with the
effective hopping amplitude g can be constructed with spaced
frequency Ω/2 in the frequency axis of light, where modes sup-
ported by rings A and B are labeled by a and b, respectively. With
the building block for constructing the one-dimensional synthetic
frequency dimension in a pair of rings, we can then use it to
construct a synthetic honeycomb lattice in a one-dimensional
array of pairs of rings shown in Fig. 1b [see “Methods” section].
The ring array consists groups of rings (n= 1, 2, . . . ,N), each of
which contains two pairs of rings with different combinations,
i.e., AB (labeled as α= 1) and BA (labeled as α= 2), respectively.
We write the Hamiltonian of the system under the first-order
approximation:

Hr ¼ ∑
m;n

κðayn;m;1an�1;m;2 þ byn;m;2bn;m;1Þ
h

þ g2n�1ðayn;m;1bn;m;1e
iϕ2n�1 þ ayn;m;1bn;mþ1;1e

�iϕ2n�1 Þ
þ g2nðbyn;m;2an;m�1;2e

iϕ2n þ byn;m;2an;m;2e
�iϕ2n Þ

i
þ h:c:;

ð1Þ

where ayn;m;α (an,m,α) and byn;m;α (bn,m,α) are corresponding creation
(annihilation) operators, and κ is the evanescent-wave coupling
strength between two rings at the same type. The Hamiltonian in
Eq. (1) therefore supports a two-dimensional synthetic honey-
comb lattice [Fig. 1c].

The honeycomb lattice is constructed in a synthetic space
including the spatial (x) and frequency (f) dimensions. Different
from conventional photonic honeycomb lattice in real space13,14

that depends greatly on apparent geometry, the synthetic
honeycomb lattice in Eq. (1) is dependent on both couplings
between rings (κ) and modulations (gi). Therefore, without loss of
generality, we label the horizontal distance in the synthetic lattice
between two sites with the same types as d and the horizontal
distance between two sites with different types as d/2 along the x
axis in the later plots of field patterns. The flexible choice of
hopping amplitude gi and phase ϕi provides powerful reconfigur-
ability toward different physical phenomena in simulating
graphene dynamics. We first consider κ= gi= g and ϕi= 0, and
the synthetic lattice holds the unit cell with the translation
symmetry including two frequency modes a and b in two rings.
The band structure of this honeycomb lattice in the first Brillouin
zone can be plotted in the kx–kf space, where kx and kf are wave
vectors reciprocal to the spatial (x) and frequency (f) axes,
respectively. Dirac point K and K 0 at (kx, kf)= (0, ±4π/3Ω) can be
seen in the band structure in Fig. 1d, where the zoomed-in Dirac
cone shows linear dispersion near K 0 point [Fig. 1e]. In the
following, we will show the capability for achieving different
phenomena associated with the honeycomb lattice with the
current platform.

Klein tunneling. Klein tunneling, as an intriguing phenomenon in
physics exploring a particle passing through a barrier higher than its
energy, has experienced great interest in different platforms
including graphene and photonic/phononic crystals7,14,52,53. To
demonstrate such physics in the synthetic honeycomb lattice in
Fig. 1c, we couple the first (A1) and the last (A2N) rings with an
external waveguide such that a periodic condition along the x axis
can be naturally created. Such a design forms a carbon-nanotube-
like shape [Fig. 2a]. In simulation, we consider N= 12, which
corresponds to 48 rings ranging inside x∈ [0, 35d], and modes in
the region f∈ [− 8Ω, 47.5Ω]. Here we refer f= 0 to ω0,B and denote
the first (A1) ring as x = 0 for the simplicity. We first excite the
honeycomb lattice by injecting an input plane wave with
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distribution of s1 ¼ e�ðf�f 0Þ2=Δ2
eikxðx�x0Þþikf ðf�f 0Þ to excite the initial

wave packet of the field shown in Fig. 2b, where f0= 39Ω,
x0= 17.5d, and Δ= 8.95Ω, and collect signals through external
waveguides to readout the evolution of the field in the synthetic
honeycomb lattice [see “Methods” section]. We set the k-vector in
s1 in the vicinity of the Dirac point K by using (kx, kf)= (0, 4.04π/
3Ω). The corresponding frequency detuning of the source is
ε= 0.036g, which falls in the linear dispersion region in the Dirac
cone as indicated in Fig. 1d and gives the initial velocity of the wave
packet along the negative kf direction. The simulation verifies this
feature, that the field propagates to the bottom of the synthetic
honeycomb lattice at t= 42g−1 as shown in Fig. 2c without dis-
tortion in shape, since there is no barrier in this case.

Based on the calculation in Fig. 2c, we set an artificial square-
shape barrier in the middle range of the frequency dimension in
the synthetic honeycomb lattice as shown in Fig. 2d, which in
principle can be achieved by adding on-site potential terms
Vayn;m;αan;m;α and Vbyn;m;αbn;m;α in the range f ∈ [12, 35.5]Ω. We
first consider the case with V= 0.05g which gives ε <V. The field
experiences an effective lift in its energy in the barrier region, but
still sticks to the linear region of the Dirac cone, so the initial
negative group velocity does not change during this process
[Fig. 2d]. This is indeed verified in the simulation in Fig. 2e,
which shows that the field propagates to the bottom of the
synthetic honeycomb at t= 42g−1 without significant change in
the field distribution. As a comparison, we take a larger potential
V= 1.5g, outside of the linear region of the Dirac cone, where the
field propagation is distorted as shown in Fig. 2f.

The artificial square-shape barrier along the frequency axis of
light is not easy to be constructed in the frequency dimension. In
the waveguide that composes the ring, there exists the group
velocity dispersion that can introduce on-site potentials at modes
with different resonant frequencies34,54. We now take the
dispersion back into the consideration only in this part, with
the zero dispersion point at f1= 23.75Ω. The modulation

frequency is chosen to be resonant with the frequency spacing
between modes near f= 8.5Ω (and 39Ω), which results in an
effective parabola-shape potential barrier Vðf Þ ¼ 0:05g þ
2Dðf =Ω� f 1=ΩÞ2 with D=−1.075 × 10−4g [Fig. 2g]. Such the
group velocity dispersion can be designed by the waveguide-
structure engineering55. Note here the maximum value of the
barrier (Vmax) is 0.05g > ε. Different from the previous case in
Fig. 2d that the field experiences a sudden change in the synthetic
k-space, when the wave packet of the field propagates toward the
bottom of the synthetic lattice, it experiences a gradual change
inside the Dirac cone. Yet, the distribution of the wave packet still
remains largely unchanged at t= 42g−1, as one sees in Fig. 2h.
The propagation of the field is distorted if one uses a larger
barrier, i.e., beyond the limit of the Dirac cone as shown in Fig. 2i,
where the simulation is performed with Vmax ¼ 1:5g. Therefore,
as long as the potential change is limited inside the linear region
near the Dirac point, the constructed synthetic honeycomb lattice
supports the Klein tunneling along the frequency axis of light.

Valley-dependent edge state. Valley-dependent photonic phe-
nomena recently attract a broad interest in photonics for pro-
viding valley degree of freedom, which offers a new possibility to
manipulate light and finds important applications in optical
encoding and enlarging the optical information capacity13. Here
we show the existence of valley-dependent edge states in the
synthetic space. Lengths of rings are carefully adjusted to intro-
duce the required effective on-site potential in each ring, which
breaks the inversion symmetry of the synthetic lattice and lifts the
degeneracy at Dirac points K and K 0.

We consider 12 pairs of rings (24 rings), each of which has a
different circumference L0 close to the reference length L. The
offset in length leads to slightly shifted resonant frequencies in
each ring, which leads to the effective on-site potential on each
column site in the synthetic lattice as shown in Fig. 3a [see
“Methods” section]. As one can see, we consider that there are

Fig. 1 Construction of synthetic honeycomb lattice. a Rings A and B support a set of resonant modes a (blue circle) and b (cyan circle) separated by the
free spectral range Ω in the frequency dimension (f). Both rings are modulated by electro-optic modulator (EOM) with modulation phase ϕ, modulation
frequency Ω/2, and effective hopping amplitude g. ω0 and ω0−Ω/2 are central resonant frequencies of ring A and ring B. m denotes the index of the mth
resonant mode. b A one-dimensional array of ring resonators is composed of groups of pairs of rings in a along the spatial dimension x. Ai (Bi) represents
the ith ring A (ring B), where i is a positive integer. c The system in b can be mapped into a honeycomb lattice in a synthetic space including one spatial
dimension (x) and one frequency dimension (f). an,m,α and bn,m,α represent the operator for the field at the mth mode in ring A and ring B, which are labeled
by integers n and α as indicated in the figure. gi and ϕi are the corresponding effective hopping amplitude and modulation phase, while κ is the coupling
strength. d The band structure of the honeycomb lattice in the reciprocal space (kx, kf), where kx and kf are wave vectors reciprocal to spatial and frequency
axes, ε is the eigenvalue (frequency shift of the field), and d denotes the horizontal distance between two sites with same types in the synthetic lattice.
e The zoomed-in Dirac cone at K0 point in d.
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on-site potentials ±U0 alternatively in each ring except for the
middle two rings having −U0 forming the artificial domain wall.
The band structures with an infinite frequency dimension and
finite rings can be calculated. Figure 3b, c plots the projected band
structures with potentials U0= 0 and U0= 0.5g, respectively. One
sees that the Dirac point at K (K 0) with kf= 4π/3Ω (kf= 2π/3Ω) is
open and valley-dependent edge states are shown when effective
on-site potentials are added.

To verify edge states in two valleys in the synthetic honeycomb
lattice, we further assume that there are boundaries at the
frequency dimension, which can be achieved either by adding
auxiliary rings to knock out certain modes at particular
frequency56 or by designing a sharp change in the group velocity
dispersion of the waveguide that composes the ring30. Therefore,
a lattice with the range of x∈ [0, 17d] and f∈ [0, 23.5Ω] is
considered in simulations. We excite the 12th ring on the artificial
domain wall by a source field which has the Gaussian spectrum:
s2 ¼ eikf �ðf�f 2Þ � e�ðf�f 2Þ2=Δ2

, with f2= 11.5Ω and Δ= 8.49Ω. kf
here indicates the relative phase information for different
frequency components in the source. We first choose kf= 4π/
3Ω, which excites states near K point, and the simulation results
at t= 10g−1 with U0= 0 and U0= 0.5g are plotted in Fig. 3d, e,
respectively. One can see that when effective potentials are zero
and the K point is degenerate, the field leaves the domain wall and
spreads into the left and right sides of the synthetic lattice. On the
other hand, when there are non-zero potentials shown in Fig. 3a,
the one-way edge state at the K valley is excited and propagates
towards lower frequency components with most of the energy

concentrated in the middle two rings on the artificial domain
wall. Moreover, if we choose kf= 2π/3Ω in the source to excite
the edge state near the K 0 point, the field experience
unidirectionally up-conversion in the middle two columns of
the synthetic lattice [Fig. 3f], which shows the possibility of
achieving valley-dependent edge states in the synthetic lattice.

Effective magnetic field. Photons are neutral particles, but it has
been shown that, by introducing the proper distribution of
hopping phases in a photonic lattice, one can create an effective
magnetic field for photons42. In the synthetic honeycomb lattice
in Fig. 1c, we consider the modulation phase as ϕ2n−1= (2n− 1)
ϕ and ϕ2n= (2n)ϕ. In each unit cell, the clockwise accumulation
of the hopping phase is−2ϕ, which naturally brings an effective
magnetic field. In Fig. 4a, we consider an infinite synthetic lattice
and plot the projected band structure along ϕ, which gives the
butterfly-like spectrum. The choice of phase can be tuned in each
modulator arbitrarily. If we set ϕ= π/4, a projected band struc-
ture along the kf axis can be plotted by considering finite number
of rings (with n∈ [1, 40]). As shown in Fig. 4b, one can see that
there are 8 bulk bands, which is consistent with the fact that there
are 8 sites in each unit cell once phases with ϕ= π/4 are con-
sidered. The middle two bulk bands have degenerate points.
Meanwhile, there are 6 gaps between bulk bands, where it sup-
ports 8 pairs of topologically protected edge states. By analyzing
the distribution of the eigenstate for each edge state, we can find
whether the edge state is located on the left or right edge, as
shown in Fig. 4b. Moreover, the Chern number for each bulk

Fig. 2 Klein tunneling. a An external waveguide connects the first (A1) and last (A2N) ring resonator together, which forms an effective carbon-nanotube-
like honeycomb lattice in the synthetic space with spatial direction (x) being periodic and frequency dimension (f) being finite. N is the number of groups
of rings. b The intensity distribution in the synthetic lattice of the initial plane-wave excitation at propagation time t= 0. Ω is the free spectral range, and
d denotes the horizontal distance between two sites with the same types in the synthetic lattice. c The intensity distribution in the synthetic lattice at
t= 42g−1 with no barrier, with g being the effective hopping amplitude. d The cartoon of the excited wave packet in the Dirac cone moving towards the
negative direction along square-shape potential barrier (green line) with the frequency detuning ε (dashed gray line). The corresponding intensity
distribution in the synthetic lattice with the square-shape potential barrier in d at t= 42g−1 with maximum potential value e V= 0.05g and f V= 1.5g.
g The cartoon of the excited wave packet in the Dirac cone moving towards the negative direction along parabola-shape potential barrier (green line) with
the frequency detuning ε (dashed gray line). The corresponding intensity distribution in the synthetic lattice with the parabola-shape potential barrier in
g at t= 42g−1 with maximum potential value h Vmax ¼ 0:05g and i Vmax ¼ 1:5g. The red arrows in d and g present the direction of velocity.
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band counting from the highest band can be calculated as 1, 1,
−3, 2, −3, 1, 1, respectively.

We then perform simulations in a synthetic honeycomb lattice
in 12 pairs of rings with f ∈ [0, 11.5Ω]. To excite a specific edge
state in Fig. 4b, we choose a single-frequency source field at the
frequency ωm=5,A+ ωs near the 5th mode with a small detuning
ωs, i.e., s3 ¼ e�iωst and excite the rightmost ring. The simulations
are performed with different parameters and results are plotted in
Fig. 4c–f at t= 20g−1. We first set ϕ= 0, so there is no effective
magnetic field, and choose ωs= ε1= 0.9g. One can see in Fig. 4c
that the intensity distribution of the field undergoes a random-
walk-like propagation in the synthetic honeycomb lattice, and
bulk of the lattice is excited. Next, we set ϕ= π/4 and introduce

the effective magnetic field. In this case, we again consider the
excitation ωs= ε1, and plot the result in Fig. 4d. Different from
Fig. 4c, here one can see the topologically protected one-way edge
state propagating towards lower frequency components at the
right boundary, which is consistent with the negative slope of the
edge state at ε1 in Fig. 4b. We further use ωs= ε2= 1.7g and
ωs= ε3= 2.2g to perform simulations and plot results in Fig. 4e, f,
respectively. In both cases, the excited edge states propagate
towards higher frequency components unidirectionally, corre-
sponding to different edge states with the positive slope. Although
we study phenomena only associated to the effective magnetic
field with ϕ= π/4, the gauge field can be easily tuned in this
synthetic honeycomb lattice.

Fig. 3 Valley-dependent edge state. a Effective on-site potentials (U0 and −U0) are alternatively applied in the synthetic lattice [formed by spatial
dimension (x) and frequency dimension (f)], with an artificial domain wall in the middle two columns of synthetic lattices (labeled in red dashed line). The
projected band structure in finite rings with b U0= 0, and c U0= 0.5g. kf is the wave vector reciprocal to frequency axis, ε is the frequency shift of the field,
Ω is the free spectral range, and g is the effective hopping amplitude. K and K0 are two Dirac points. The simulated intensity distributions at propagation
time t= 10g−1 under conditions: d U0= 0, and kf= 4π/3Ω; e U0= 0.5g, and kf= 4π/3Ω; f U0= 0.5g, and kf= 2π/3Ω. d labels the horizontal distance
between two sites with same types in the synthetic lattice. Red arrows indicate the excitation at the 12th ring with the central frequency mode at f2= 11.5Ω.
White arrows denote the unidirectional propagation.
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Valley-dependent Lorentz force. Different from the effective
magnetic field for photons introduced by modulation phases, a
pseudo magnetic field can also be alternatively generated by
applying non-uniform strain in the honeycomb lattice57. In our
proposed synthetic honeycomb lattice, we can also easily simulate
the effective valley-dependent Lorentz force by varying modula-
tion strength in each ring.

We consider a relatively large synthetic lattice composed of 56
pairs of rings with a range of x∈ [0, 83d] and f∈ [0, 59.5Ω]. We
emphasize that, although there are 112 rings considered in
simulations for better illustration, one does not require such a
large number of rings to realize the effective valley-dependent
Lorentz force in physics. For each modulator, we consider effective
modulation strengths having g2n−1= [1+ η(3n− 42.75)]g and
g2n= [1+ η(3n− 41.25)]g, where η is a constant. Following the
relation between coupling strengths in a honeycomb lattice and
the effective gauge potential58–60, we obtain an effective gauge
potential Af(x)∝ g(x)− κ and Ax= 0 in the vicinity of the Dirac
point, where the relation between n and x is used and κ is assumed
to be a constant. This effective gauge potential leads to a pseudo
magnetic field B∝ η and along the z direction. Therefore, one can
tune η by changing modulations strengths in rings to vary B in the
synthetic honeycomb lattice.

In simulations, we inject fields into multiple rings with different
frequency components to excite a Gaussian-shape wave packet

s4 ¼ e�½ðx�x0Þ2=ð15:5dÞ2þðf�f 3Þ2=Δ2� � ei½kx �ðx�x0Þþkf ðf�f 3Þ� in the synthetic
lattice, where Δ= 8.95Ω, x0= 40d and f3= 29.5Ω are the center
position of the Gaussian-shape wave packet. The phase informa-
tion (kx, kf) is chosen to excite different states in the vicinity of the
Dirac point K or K 0 in the first Brillouin zone. The simulated
motion of the center of the wave packet (xc, fc) is then plotted to
show the trajectory of the field in the synthetic lattice, with the
definition of (xc, fc) can be found in Methods.

We first excite the vicinity of Dirac point by a wave packet s4 with
(kx, kf)= (0, 4.4π/3Ω) which gives an initial group velocity pointing
toward the negative frequency axis. Without the pseudo magnetic
field (η= 0), the wave packet of the field propagates without
changing the direction and its trajectory is straight, as shown in
Fig. 5a. Instead, if η= 0.004, the motion of the wave packet is bent to
the clockwise side due to the pseudo magnetic field. On the other
hand, if we excite the K 0 point with (kx, kf)= (0,− 4.4π/3Ω), the
motion of the wave packet is bent to the counter clockwise side under
pseudo magnetic field in the synthetic lattice [Fig. 5b]. In Fig. 5c, d,
we also excite the vicinity of Dirac points K and K 0 with
(kx, kf)= (2.2

ffiffiffi
3

p
π/3Ω,−2.2π/3Ω) and (2.2

ffiffiffi
3

p
π/3Ω, 2.2π/3Ω),

respectively. One see that, with a non-zero η, trajectories of the field
are bent towards different directions. The direction of the pseudo
magnetic field is dependent on the valley in the synthetic honeycomb
lattice, which therefore results in the field bending effect by the
effective valley-dependent Lorentz force.

Fig. 4 Topological edge states with an effective magnetic field. a The projected band structure of the honeycomb lattice in Fig. 1c along modulation phase
ϕ. The red dashed line refers to ϕ= π/4. ε is the frequency shift of the field, and g is the effective hopping amplitude. b The projected band structure in
finite rings with ϕ= π/4, where kf is the wave vector reciprocal to the frequency axis, and Ω is the free spectral range. Bands labeled in red (green)
represents edge states on the right (left) boundary of the synthetic lattice. ε1, ε2, and ε3 label three different frequencies in the band structure. c The
simulated intensity distribution as a function of spatial dimension (x) and frequency dimension (f) at propagation time t= 20g−1 with the input field having
frequency shift ωs= ε1 for the case ϕ= 0. Simulated intensity distributions at t= 20g−1 for the case ϕ= π/4 with the input field having frequency shift ωs

being d ε1, e ε2, and f ε3, respectively. d is the horizontal distance between two sites with the same types in the synthetic lattice. The red arrow indicates the
m= 5th resonant frequency mode in the rightmost ring is excited. White arrows denote the unidirectional propagation.
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Discussion
The highly tunable parameters of modulated ring resonators are
of apparent significance in our theoretical design for achieving the
synthetic honeycomb lattice, which can be realized in potential
experiments based on established platforms with fiber loops41–44,
and lithium niobate technologies45,61. For the fiber-based ring
resonator, the modulation frequency is ~10 MHz for a fiber
length of ~10 m. 2 × 2 fiber couplers with a high-contract splitting
ratio can be used to couple two rings. As for the on-chip lithium
niobate device, fields in nearby resonators are coupled through
the evanescent wave, where the modulation frequency can reach
~10 GHz when the ring radius is ~2–3 mm45. In our theoretical
proposal, the hopping amplitude gi as well as modulation phase ϕi
along the frequency dimension [Fig. 1c] can be individually tuned
by changing the external applied voltage on the electro-optic
modulator inside each ring. Moreover, lengths of rings can be
slightly altered by additional delay lines or thermal effects added
into fiber or on-chip rings if needed, which provides a way to
modify the effective on-site potential in each ring. Therefore, after
the one-dimensional coupled rings are fabricated, this design can
support simulating various graphene dynamics in two dimensions
by setting proper parameters in modulators, including phenom-
ena we have shown previously in this paper. Our proposed syn-
thetic honeycomb lattice hence potentially provides high
reconfigurability.

Here we study the proposal for constructing the honeycomb
lattice in the synthetic space. In spatial dimensions, there natu-
rally exist various lattice structures with different symmetries,
which are possible to be simulated in the synthetic space. For
example, different lattice-geometry opportunities have been the-
oretically discussed in the cold-atom platform where Raman-
assisted tunnelings have been used to construct the synthetic
dimension62. In photonics, however, most researches on synthetic
dimensions focus on lattices with the C4 symmetry33,47,63, while
constructing more complicated lattice structures is still lacking.
The proposed method that we use to build the synthetic honey-
comb lattice through staggered resonances, therefore, offers a
different perspective for considering to create lattices with C3

symmetry64–67, such as triangular lattice and kagome lattice,
where valley degree of freedom naturally emerges, and hence
shows a way for further constructing other complicated lattice
structures with richer physics in photonics68,69.

In summary, we use an array of ring resonators composed by
two types of rings undergoing dynamic modulations to form a
two-dimensional honeycomb lattice in a synthetic space including
one spatial dimension and one frequency dimension. We theo-
retically demonstrate a highly re-configurable synthetic honey-
comb lattice, which is flexibly adjusted for achieving various
parameters by changing the external modulation details. It has
been used to simulate various phenomena including Klein

Fig. 5 Valley-dependent Lorentz force. The simulated trajectories of the center of the Gaussian-shape wave packet (xc, fc) at discrete times with time
interval δt= 0.5g−1, where g is the effective hopping amplitude. The lattice is excited by initial source in the vicinity of the Dirac point K or K0 with a
(kx, kf)= (0, 4.4π/3Ω), b (kx, kf)= (0,−4.4π/3Ω), c (kx, kf)= (2.2

ffiffiffi
3

p
π/3Ω,−2.2π/3Ω), and d (kx, kf)= (2.2

ffiffiffi
3

p
π/3Ω, 2.2π/3Ω). kx and kf are wave vectors

reciprocal to spatial and frequency axes, Ω is the free spectral range, d denotes the horizontal distance between two sites with the same types in the
synthetic lattice, and t is propagation time. The trajectory with a black solid (hollow) circle represents the motion of the wave packet in the case with
(without) the valley-dependent Lorentz force, which is projected into the spatial-frequency (x, f) plane with the varying color of circles representing the
center position in the synthetic lattice at different simulation times.
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tunneling, valley-dependent edge states, topological edge states
with an effective magnetic field, and field bending with the valley-
dependent Lorentz force. Follow our theoretical proposal, future
works can land on extending the honeycomb lattice to a three-
dimensional structure with synthetic dimensions and/or adding
optical nonlinearity to explore further light-manipulating
opportunities. Our work shows not only the capability for
simulating quantum phenomena, valley-dependent physics, and
topological states in a modulated ring system, but also points out
an alternative way to control the frequency information of light
with synthetic dimensions, which potentially enriches quantum
simulations of graphene physics with photonic technologies.

Methods
The construction of the synthetic honeycomb lattice. In Fig. 1a, ring A (B)
supports a set of resonant modes with frequency ωm,A= ω0+mΩ (ωm,B= ω0−Ω/
2+mΩ), which is plotted in blue (cyan) color. The effective hopping amplitude
between the nearby resonant modes a and b in two rings is formed through a two-
step process: the resonant mode a in ring A couples to a corresponding non-
resonant mode in ring B via evanescent-wave coupling, and then couples to the
resonant mode b in ring B via the dynamic modulation, vice versa. Hence the
effective coupling strength g is composed of both the evanescent-wave coupling
strength and the modulation strength in EOM70, and hence such connections
construct a synthetic frequency dimension in a pairs of modulated rings. The
construction of effective couplings between resonant modes in a pair of rings with
the AB type can also be generalized to the pair of rings with the BA type by mirror
symmetry [see the pair of rings labeled by n= 1 and α= 2 as an example in
Fig. 1c]. Therefore, in an array of pairs of rings arranged with alternate combi-
nations AB and BA as shown in Fig. 1b, the spatially nearby resonant modes at the
same frequency can be coupled through the evanescent wave at the coupling
strength κ. Following this procedure, a synthetic honeycomb lattice can be con-
structed in a space shown in Fig. 1c with the longitudinal frequency dimension and
the horizontal spatial dimension.

Simulation method. We expand the field inside each ring as

ψðtÞ
�� � ¼ ∑

n;m

�
Cn;m;αa

y
n;m;α þ Dn;m;αb

y
n;m;α

�
0j i; ð2Þ

where Cn,m,α and Dn,m,α are the field amplitude at the mth mode in the corre-
sponding ring. Schrödinger equation i _ψðtÞ

�� � ¼ H ψðtÞ
�� �

is then used in
simulations30. For different simulations, we take different source s to excite par-
ticular rings at specific modes, which we show details in the main text. The exci-
tation process is done by coupling each ring with external waveguides where the
light can be injected. The field amplitudes in rings can then also be read out
through waveguides. The coupling equation between the external waveguide and
the ring is

Cn;m;αðDn;m;αÞðtþÞ
ECðDÞ;m;αðtþÞ

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
�iγ

�iγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
 !

Cn;m;αðDn;m;αÞðt�Þ
ECðDÞ;m;αðt�Þ

 !
; ð3Þ

where γ is the coupling strength between the external waveguide and the ring
through evanescent wave. EC(D),m,α(t−) (EC(D),m,α(t+)) is the corresponding field
component injected (collected) through the external waveguide, and t±= t+ 0±.

An effective on-site potential induced by frequency shift. For a ring, the
resonant frequency for the mth resonant mode is ωm= ω0+mΩ= ω0+m ⋅ 2πvg/
L, where ω0 is a reference optical frequency and is much larger than Ω (which is
usually in the regime of GHz to THz). Without loss of generality, we can rewrite
the equation of resonant frequency as ωm= (M+m) ⋅ 2πvg/L, where M≫m is a
number orders of magnitudes larger than m. If we consider the length of the ring
changes to L0 ¼ L� δL (δL≪ L), the new resonant frequency becomes ω0

m ¼
ðM þM � δL=LþmÞ � 2πvg=L ¼ ðM0 þm0Þ � 2πvg=L ¼ ω0

0 þm0Ω under the first-
order approximation, where m0 ¼ mþ roundðM � δL=LÞ and then M0 is shifted by
a number smaller than 1. Hence, by changing the length of rings slightly, one is
possible to shift the reference frequency ω0 with a small amount, which results in
an effective on-site potential U � ω0

0 � ω0 in each ring.

Definitions of xc and fc. We define central positions of the Gaussian-shape wave
packet in the synthetic lattice as

xc ¼
∑n;m;αxn;m;αIm;n;α

∑n;m;αIn;m;α

;

f c ¼
∑n;m;αf n;m;αIm;n;α

∑n;m;αIn;m;α

;

ð4Þ

where In,m,α= ∣Cn,m,α∣2 or ∣Dn,m,α∣2, xn,m,α, and fn,m,α are the corresponding position
along the x axis and frequency dimension in the synthetic lattice, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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